Connect with us


Complex funerary monument found at foot of La Peña de los Enamorados



A team of archaeologists have found a complex megalithic funerary monument at Piedras Blancas, located at the foot of La Peña de los Enamorados (“Lovers Rock”), a mountain near the city of Antequera in Andalusia, Spain.

The results of the excavation, published in the journal Antiquity, has revealed the monument to be part natural, part built, part hypogeum, and part megalith.

La Peña de los Enamorados is a limestone massif which towers at 880m above the Antequera plain. The area is recognised as a UNESCO World Heritage site due to the influence the mountain and the peaks of El Torcal played in the development of Late Neolithic and Copper Age sites, such as Menga, Viera and El Romeral from the 3rd and 4th millennia BC.

Excavations at Piedras Blancas revealed a tomb built on a small hill of calcarenite limestone, in which the structure is embedded in the geological substrate and matches the direction of the mountain’s north-east plane.

Image Credit : M. Díaz-Guardamino

According to the researchers: “The tomb is part natural monument, part hypogeum, part megalith. It consists of a pseudo-rectangular cavity, 4.5m long and 1.45m wide, which was cut into the bedrock through the removal of the local calcarenite rock and then delimited, to the east and west, by a series of medium-sized slabs”.

The builders deliberately utilised the naturally folded geology, integrating the structure into the surrounding landscape. The naturally occurring calcarenite rocks are vertically oriented due to the anticline fold that forms the long sides of the structure towards the north and south.

Although there is no conclusive evidence indicating the existence of a roof, some significant broken slabs discovered in the upper portion of the tomb’s fill may be the remnants of capstones.

Two slabs delimiting the entrance and two at the back of the chamber are made of locally available stone and have been carefully selected and carved with decorated engraved motifs.

The builders also used slabs of marine sedimentary rocks that has natural ripples which is also found at the megalithic monument of El Romeral, suggesting that these structures were built according to a shared set of ideas.

Another remarkable architectural discovery consists of two triangular dressed stones fixed to the chamber’s floor with a mud mortar that are orientated with the summer solstice sunrise.

According to the study authors: “The fill of the tomb included a substantial assemblage of human bone, some faunal remains, knapped lithics and ceramics. A large number of stones (988kg), used to create specific features and spaces within the burial chamber, was also recorded. The stratigraphic evidence and carbon dating of the human remains suggests that the tomb was used over three major periods.”

The tomb has enabled the researchers to expand our understanding of the Antequera World Heritage site, the importance of La Peña de los Enamorados as a focus of Neolithic activity, and reveals further insights into the sophisticated arrangement through which the carving of rocks (either as stelae, as astronomical devices, or as canvasses decorated with natural motifs of marine origin) was coupled with the natural orientation of the geological substrate to ‘domesticate’ sunlight.


Header Image Credit : M. Ángel Blanco de la Rubia

Continue Reading


Nazca geoglyphs discovered used AI deep learning




Archaeologists from the Yamagata University have used AI deep learning to discover new geoglyphs in the northern part of the Nazca Pampa in the arid Peruvian coastal plain.

Geoglyphs in the Nazca Pampa were first identified during the 1920’s, with ongoing studies since the 1940’s revealing various figurative geoglyphs of zoomorphic designs, geometric shapes, and linear lines.

Geoglyphs can be categorised into three main types: figurative, geometric, and lineal. Archaeologists suggest that the lineal geoglyphs were created by the Nazca, a culture that developed during the Early Intermediate Period and is generally divided into the Proto Nazca (phase 1, 100 BC to AD 1), the Early Nazca (phases 2–4, AD 1 to 450), Middle Nazca (phase 5, AD 450 to 550) and the Late Nazca (phases 6–7, AD 550 to 750).

The relief type dates from the Late Formative period (400 to 200 BC), as the iconography of the geoglyphs are similar to that of Formative petroglyphs found on outcrops of rock. During this period, the region was inhabited by the Paracas Culture, an Andean people that emerged around 800 BC until 100 BC.

Since 2004, Yamagata University has been conducting geoglyph distribution surveys using satellite imagery, aerial photography, airborne scanning LiDAR, and drone photography to investigate the vast area of the Nazca Pampa covering more than 390 km2.

In 2016, the researchers used aerial photography with a ground resolution of 0.1 m per pixel to create a detailed survey of the region. Overtime, the team have identified various geoglyphs, however, the process is very time consuming, so they have adopted AI deep learning to analyse the photographs at a much faster rate.

The results of a study, published in the Journal of Archaeological Science, has revealed the discovery of four new Nazca geoglyphs using this new method by creating an approach to labelling training data that identifies a similar partial pattern between the known and new geoglyphs.

The four new geoglyphs depict a humanoid figure, a pair-of-legs, a fish, and a bird. The humanoid geoglyph is shown holding a club in his/her right hand and measures 5 metres in length. The fish geoglyph, shown with a wide-open mouth measures 19 metres, while the bird geoglyph measures 17 metres and the pair-of-legs 78 metres.

According to the study authors: “We have developed a DL pipeline that addresses the challenges that commonly arise in the task of archaeological image object detection. Our approach allows DL to learn representations of images with better generalisation and performance, enabling the discovery of targets that have been difficult to find in the past. Moreover, by accelerating the research process, our method contributes to archaeology by establishing a new paradigm that combines field surveys and AI, leading to more efficient and effective investigations.”

Yamagata University

Header Image Credit : Yamagata University

Continue Reading


Archaeologists study fortress in southern Georgia to understand community resilience




A team of archaeologists led by Cranfield University is conducting a detailed study of the fortress of Dmanisis Gora in the Kvemo Kartli region of Georgia.

The study is part of a project to understand why communities in the region were more resilient than other parts of the world during the transition from the Bronze to the Iron Age around 1200 BC.

Dmanisis Gora is located at the north-eastern edge of the highland zone between two such gorges. The site consists of a compact defensive core that has two defensive walls with an enclosed area of 3.7 acres.

On the plateau behind the citadel area, a third wall, extending about 1000 m from edge to edge on the plateau, encloses a much larger area of about 138.3 acres that contains numerous circular and linear stone features.

During the so-called ‘12th Century BC crisis’ and its aftermath, the majority of Middle Eastern regions underwent a period of significant turmoil characterised by the disintegration of empires, famine, crop failures, armed conflicts, and mass migration.

In contrast, the Caucasus region (consisting of present-day Georgia, Armenia, and Azerbaijan) appears to have been shielded from this tumultuous period, exhibiting only gradual transformations in material culture and patterns of settlement.

Either the region managed to entirely avoid the widespread disruption, or it did not experience the same cultural, economic, and political repercussions as other areas. This suggests that the communities in the region might have been more resilient, enabling them to withstand and adapt to the challenges in a comparatively effective manner.

Dr Erb-Satullo, from Cranfield University, said: “The key to understanding why the Bronze Age-Iron Age transition is different in the Caucasus is to study the fortress communities that dot the landscape during this period. We’re looking for clues about life in the Late Bronze Age through examining areas such as ceramics, burial rituals, farming practices, tools and social structures.”

“Given the upheaval at that time in other nearby regions, we are intrigued to find out more about one of these sites and determine what underlies their apparent resilience,” added Dr Erb-Satullo.

The project expands upon earlier pilot excavations carried out at the site prior to the pandemic, along with a thorough survey conducted in Autumn 2022 using drone-based photogrammetry. This is done by using the latest forensic technologies including isotopic analysis of animal remains, metallurgy, magnetometry and deploying drones to scan the area.

“What’s really exciting about this site is its size, preservation, and the fact that it has layers dating precisely to the years around the 12th Century BC crisis,” continued Dr Erb-Satullo. “Many fortresses are on hills which are prone to erosion. But this one has relatively flat topography, so the sediment will have built up in layers over time, helping to preserve artefacts and archaeological clues from the Late Bronze age.”

Cranfield University

Header Image Credit : BING Maps

Continue Reading


Generated by Feedzy