Space
Stunning Image of Supernova Remnant Processed by New Australian Supercomputer

Within 24 hours of accessing the first stage of Australia’s newest supercomputing system, researchers have processed a series of radio telescope observations, including a highly detailed image of a supernova remnant.
The very high data rates and the enormous data volumes from new-generation radio telescopes such as ASKAP (Australian Square Kilometre Array Pathfinder) need highly capable software running on supercomputers.
This is where the Pawsey Supercomputing Research Centre comes into play, with a newly launched supercomputer called Setonix – named after Western Australia’s favorite animal, the quokka (Setonix brachyurus).
ASKAP, which consists of 36 dish antennas that work together as one telescope, is operated by Australia’s national science agency CSIRO; the observational data it gathers are transferred via high-speed optical fibers to the Pawsey Centre for processing and converting into science-ready images.
In a major milestone on the path to full deployment, we have now demonstrated the integration of our processing software ASKAPsoft on Setonix, complete with stunning visuals.
Traces of a dying star
An exciting outcome of this exercise has been a fantastic image of a cosmic object known as a supernova remnant, G261.9+5.5.
Estimated to be more than a million years old, and located 10,000-15,000 light-years away from us, this object in our galaxy was first classified as a supernova remnant by CSIRO radio astronomer Eric R. Hill in 1967, using observations from CSIRO’s Parkes Radio Telescope, Murriyang.
Supernova remnants (SNRs) are the remains of powerful explosions from dying stars. The ejected material from the explosion plows outwards into the surrounding interstellar medium at supersonic speeds, sweeping up gas and any material it encounters along the way, compressing and heating them up in the process.
The galactic supernova remnant G261.9+5.5. (Wasim Raja/CSIRO; Pascal Elah/Pawsey)
Additionally, the shockwave would also compress the interstellar magnetic fields. The emissions we see in our radio image of G261.9+5.5 are from highly energetic electrons trapped in these compressed fields. They bear information about the history of the exploded star and aspects of the surrounding interstellar medium.
The structure of this remnant revealed in the deep ASKAP radio image opens up the possibility of studying this remnant and the physical properties (such as magnetic fields and high-energy electron densities) of the interstellar medium in unprecedented detail.
Putting a supercomputer through its paces
The image of SNR G261.9+05.5 might be beautiful to look at, but the processing of data from ASKAP’s astronomy surveys is also a great way to stress-test the supercomputer system, including the hardware and the processing software.
We included the supernova remnant’s dataset for our initial tests because its complex features would increase the processing challenges.
Data processing even with a supercomputer is a complex exercise, with different processing modes triggering various potential issues. For example, the image of the SNR was made by combining data gathered at hundreds of different frequencies (or colors, if you like), allowing us to get a composite view of the object.
But there is a treasure trove of information hidden in the individual frequencies as well. Extracting that information often requires making images at each frequency, requiring more computing resources and more digital space to store.
While Setonix has adequate resources for such intense processing, a key challenge would be to establish the stability of the supercomputer when lashed with such enormous amounts of data day in and day out.
Key to this quick first demonstration was the close collaboration between the Pawsey Centre and the ASKAP science data processing team members. Our teamwork enabled all of us to better understand these challenges and quickly find solutions.
These results mean we will be able to unearth more from the ASKAP data, for example.
More to come
But this is only the first of two installation stages for Setonix, with the second expected to be completed later this year.
This will allow data teams to process more of the vast amounts of data coming in from many projects in a fraction of the time. In turn, it will not only enable researchers to better understand our Universe but will undoubtedly uncover new objects hidden in the radio sky. The variety of scientific questions that Setonix will allow us to explore in shorter time frames opens up so many possibilities.
This increase in computational capacity benefits not just ASKAP, but all Australia-based researchers in all fields of science and engineering that can access Setonix.
While the supercomputer is ramping up to full operations, so is ASKAP, which is currently wrapping up a series of pilot surveys and will soon undertake even larger and deeper surveys of the sky.
The supernova remnant is just one of many features we’ve now revealed, and we can expect many more stunning images, and the discovery of many new celestial objects, to come soon.
Wasim Raja, Research scientist, CSIRO and Pascal Jahan Elahi, Supercomputing applications specialist, Pawsey Supercomputing Research Centre, CSIRO.
This article is republished from The Conversation under a Creative Commons license. Read the original article.
Space
Alien space debris stuck in Earth’s orbit, researchers say

Recently, a group of experts from Harvard University, led by physics
professor Avi Loeb, announced the possible presence of alien space
debris in Earth’s orbit, reports the Daily Star.
Leading
space research expert Professor Loeb is confident that the discovery of
such “interstellar objects could help expand our knowledge of possible
alien civilizations and technologies. A team of scientists is conducting
research to confirm that some of the objects in our orbit may be
connected to other star systems.
During an interview with Live
Science, Professor Loeb explained that these objects could enter the
solar system from interstellar space, defying Jupiter’s gravitational
pull and occupying limited orbits around the sun.
Some of them may
have technological origins similar to the probes sent by mankind into
interstellar space, such as Voyager 1 and Voyager 2, Pioneer 10 and 11
and New Horizons.
However,
despite these interesting assumptions, Professor Loeb did not specify
what specific objects he was talking about. In his research report, he
notes that there could be “a significant number” of potentially
detectable objects in Earth’s orbit.
To confirm their assumptions,
the team of scientists uses computer simulations and the Vera Rubin
Observatory (Chile) with a high-resolution camera of 3.2 billion pixels.
This will allow for regular observations of the Southern sky and the
possibility of detecting several captured objects about the size of a
football field.
It is assumed that these interstellar objects passed through the
boundaries of the solar system and may carry unique information about
other civilizations and their technologies. If we could confirm the
origin of these objects, the mysteries that open before us, this would
be a real breakthrough in space exploration.
Professor Loeb
expresses hope that the new research will not only help expand our
knowledge of extraterrestrial technologies, but may also lead to the
discovery of new alien civilizations . Answers to such questions can be
of global significance and influence our understanding of the place of
mankind in the Universe.
And
while there are still many questions and assumptions, the study by
Professor Loeb and his team opens a new chapter in space exploration.
Each new discovery can be the key to deciphering the mysteries of the
cosmos and the possibility of encountering alien life forms.
Space
Betelgeuse is acting strange again

Betelgeuse, a red giant on the brink of death, continues to show
unusual behavior. After the Great Blackout, which occurred in late 2019
and early 2020, the star became unusually bright. It is now the seventh
brightest star in the sky, while it normally ranks tenth. This has led
to speculation that Betelgeuse is preparing to explode in a
spectacularly large supernova.
However, scientists believe it’s too early to tell, and it’s likely
that this behavior is due to ongoing fluctuations after the Great
Blackout of 2019, and the star will return to normal within a decade.
Betelgeuse is one of the most interesting stars in the sky. It is
about 700 light-years from Earth and is a red giant in the last stage of
its life. It is also an unusual star for a red giant because it was
previously a monster blue-white O-type star, the most massive class of
stars.
Betelgeuse has changed its spectral type because it has almost
exhausted its hydrogen reserves. It now burns helium into carbon and
oxygen and has expanded to a gigantic size: about 764 times the size of
the Sun and about 16.5 to 19 times its mass.
Eventually it will run out of fuel to burn, become a supernova, eject
its outer material, and its core will collapse into a neutron star.
Before the Great Blackout, Betelgeuse also had periodic fluctuations
in brightness. The longest of these cycles is about 5.9 years and the
other is 400 days. But it seems that the Great Blackout caused changes
in these oscillations.
A new paper by astrophysicist Morgan McLeod of the
Harvard-Smithsonian Center for Astrophysics has shown that the 400-day
cycle appears to have been halved. This pulsational cycle is probably
caused by expansion and contraction within the star. According to
simulations carried out by MacLeod and his colleagues, the convective
flow inside Betelgeuse may have risen and become material that separates
from the star.
-
Ghosts10 months ago
Zozo: The Ouija Board Demon
-
Space8 months ago
Scientists claim to have found the answer what existed before the Universe
-
Ghosts10 months ago
Jumbee: Demons of the Caribbean
-
General10 months ago
The War for the Planet Between Humans and Neanderthals Lasted 100,000 Years
-
General9 months ago
Where did ships from the Middle Ages come from in the US deserts?